Gutter and downpipe systems must comply with the National Construction Code 2016:

In Victoria, roof drainage is regulated as plumbing work by the Victorian Building Authority (VBA) and NCC Volume 3 (Plumbing Code of Australia) applies, which references AS/NZS 3500.3 2015

Performance Requirements (DP1.2)

The roof drainage system, must be designed, installed and maintained to dispose of stormwater flows due to extreme rainfall events by the installation and maintenance of overflow devices or measures of required capacity.

Overflow Performance Solutions

Provide a guaranteed stated average back gap using spacers at 600mm centres.

Rainfall duration intensities vary throughout Australia (Ref Table 4).
Table 1 - OVERFLOW VOLUME FOR CONTINUOUS MEASURE L/s/m

<table>
<thead>
<tr>
<th>Ridge to Gutter Length (m)</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>0.08</td>
<td>0.17</td>
<td>0.25</td>
<td>0.33</td>
<td>0.42</td>
<td>0.50</td>
<td>0.58</td>
<td>0.67</td>
</tr>
<tr>
<td>175</td>
<td>0.10</td>
<td>0.19</td>
<td>0.29</td>
<td>0.39</td>
<td>0.49</td>
<td>0.58</td>
<td>0.68</td>
<td>0.78</td>
</tr>
<tr>
<td>200</td>
<td>0.11</td>
<td>0.22</td>
<td>0.33</td>
<td>0.44</td>
<td>0.56</td>
<td>0.67</td>
<td>0.78</td>
<td>0.89</td>
</tr>
<tr>
<td>225</td>
<td>0.13</td>
<td>0.25</td>
<td>0.38</td>
<td>0.50</td>
<td>0.63</td>
<td>0.75</td>
<td>0.88</td>
<td>1.0</td>
</tr>
<tr>
<td>250</td>
<td>0.14</td>
<td>0.28</td>
<td>0.42</td>
<td>0.56</td>
<td>0.69</td>
<td>0.83</td>
<td>0.97</td>
<td>1.1</td>
</tr>
<tr>
<td>275</td>
<td>0.15</td>
<td>0.31</td>
<td>0.46</td>
<td>0.61</td>
<td>0.76</td>
<td>0.92</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>300</td>
<td>0.17</td>
<td>0.33</td>
<td>0.50</td>
<td>0.67</td>
<td>0.83</td>
<td>1.0</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>325</td>
<td>0.18</td>
<td>0.36</td>
<td>0.54</td>
<td>0.72</td>
<td>0.90</td>
<td>1.1</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>350</td>
<td>0.19</td>
<td>0.39</td>
<td>0.58</td>
<td>0.78</td>
<td>0.97</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>375</td>
<td>0.21</td>
<td>0.42</td>
<td>0.63</td>
<td>0.83</td>
<td>1.0</td>
<td>1.3</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>400</td>
<td>0.22</td>
<td>0.44</td>
<td>0.67</td>
<td>0.89</td>
<td>1.1</td>
<td>1.3</td>
<td>1.6</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Example: Roof Area - 60m², Rainfall Intensity - 175 mm/h
Continuous Measure = 0.29 L/s/m Table 1
Dedicated Measure = 2.9 L/s Table 2

Table 2 - OVERFLOW VOLUME FOR DEDICATED MEASURE L/s

<table>
<thead>
<tr>
<th>Roof Catchment Area (m²)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1.3</td>
<td>1.7</td>
<td>2.1</td>
<td>2.5</td>
<td>2.9</td>
</tr>
<tr>
<td>175</td>
<td>1.5</td>
<td>1.9</td>
<td>2.4</td>
<td>2.9</td>
<td>3.4</td>
</tr>
<tr>
<td>200</td>
<td>1.7</td>
<td>2.2</td>
<td>2.8</td>
<td>3.3</td>
<td>3.9</td>
</tr>
<tr>
<td>225</td>
<td>1.9</td>
<td>2.5</td>
<td>3.1</td>
<td>3.8</td>
<td>4.4</td>
</tr>
<tr>
<td>250</td>
<td>2.1</td>
<td>2.8</td>
<td>3.5</td>
<td>4.2</td>
<td>4.9</td>
</tr>
<tr>
<td>275</td>
<td>2.3</td>
<td>3.1</td>
<td>3.8</td>
<td>4.6</td>
<td>5.3</td>
</tr>
<tr>
<td>300</td>
<td>2.5</td>
<td>3.3</td>
<td>4.2</td>
<td>5.0</td>
<td>5.8</td>
</tr>
<tr>
<td>325</td>
<td>2.7</td>
<td>3.6</td>
<td>4.5</td>
<td>5.4</td>
<td>6.3</td>
</tr>
<tr>
<td>350</td>
<td>2.9</td>
<td>3.9</td>
<td>4.9</td>
<td>5.8</td>
<td>6.8</td>
</tr>
<tr>
<td>375</td>
<td>3.1</td>
<td>4.2</td>
<td>5.2</td>
<td>6.3</td>
<td>7.3</td>
</tr>
<tr>
<td>400</td>
<td>3.3</td>
<td>4.4</td>
<td>5.6</td>
<td>6.7</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Example: Roof Area - 60m², Rainfall Intensity - 175 mm/h
Continuous Measure = 0.29 L/s/m Table 1
Dedicated Measure = 2.9 L/s Table 2

Table 3 - GUTTER BACK GAP OVERFLOW CAPACITY L/s/m

<table>
<thead>
<tr>
<th>STEELINE OVERFLOW SYSTEMS</th>
<th>S2</th>
<th>S25</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declared Average Bottom Back Gap (mm) - Minimum</td>
<td>1.50</td>
<td>1.875</td>
<td>2.25</td>
<td>3.00</td>
<td>3.75</td>
<td>4.50</td>
<td>6.00</td>
</tr>
<tr>
<td>Effective Head of Rainwater (mm)</td>
<td>Required Height from Top of Back of Gutter to Top of Fascia (mm) at Highpoint</td>
<td>Gutter Back Gap Overflow Capacity (L/s/m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>0.6</td>
<td>0.65</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>0.8</td>
<td>0.85</td>
<td>0.9</td>
<td>1.0</td>
<td>1.02</td>
<td>1.05</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>1.0</td>
<td>1.05</td>
<td>1.1</td>
<td>1.2</td>
<td>1.25</td>
<td>1.3</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>1.2</td>
<td>1.25</td>
<td>1.3</td>
<td>1.4</td>
<td>1.45</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>1.4</td>
<td>1.45</td>
<td>1.5</td>
<td>1.6</td>
<td>1.65</td>
<td>1.7</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>1.6</td>
<td>1.65</td>
<td>1.7</td>
<td>1.8</td>
<td>1.85</td>
<td>1.9</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>1.8</td>
<td>1.85</td>
<td>1.9</td>
<td>2.0</td>
<td>2.05</td>
<td>2.1</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>1.9</td>
<td>1.95</td>
<td>2.05</td>
<td>2.2</td>
<td>2.25</td>
<td>2.3</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.4</td>
<td>2.3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Example Highlighted in Table 3.
- Using the S2 Overflow System, with a Declared Average Bottom Back Gap of 1.5mm Minimum, and with the high point of the gutter installed 70mm below the top of the fascia, the design Back Gap Overflow Capacity will be at least 1.2 L/s/m which satisfies the overflow requirements for most areas and applications.
- Overflow Capacity of 1.2 L/s/m meets the 100 Yr ARI overflow Performance Requirements, for Ridge to Gutter Lengths up to 16.0m (Ref Table 4 next page) for all areas in Victoria, in the vast majority of residential applications.

Eaves gutter system must be designed and installed in accordance with AS/NZS 3500.3
Table 4 - RAINFALL INTENSITY

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>Average recurrence interval, once in...</th>
<th>LOCALITY</th>
<th>Average recurrence interval, once in...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 years</td>
<td>100 years</td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canberra</td>
<td>143</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Gundagai</td>
<td>137</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Tuggeranong</td>
<td>148</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>NEW SOUTH WALES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albany</td>
<td>139</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Broken Hill</td>
<td>143</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Goulburn</td>
<td>121</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>Kiama</td>
<td>226</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>Newcastle</td>
<td>226</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>142</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Sydney</td>
<td>200</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>Avalon</td>
<td>206</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>Campbelltown</td>
<td>167</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>Penrith</td>
<td>180</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Windsor</td>
<td>175</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Tweed Heads</td>
<td>252</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Wollongong</td>
<td>217</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td>NT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alice Springs</td>
<td>166</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>Darwin</td>
<td>233</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>Katherine</td>
<td>216</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>QUEENSLAND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bamaga</td>
<td>252</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>Brisbane</td>
<td>234</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Ipswich</td>
<td>211</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>Victoria Point</td>
<td>245</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Bundaberg</td>
<td>265</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Cairns</td>
<td>229</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>Cloncurry</td>
<td>218</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>Innisfail</td>
<td>248</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>Mackay</td>
<td>250</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Mt Isa</td>
<td>199</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Noosa Heads</td>
<td>258</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>Rockhampton</td>
<td>229</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Toowoomba</td>
<td>203</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Townsville</td>
<td>235</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Weipa</td>
<td>239</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>SOUTH AUSTRALIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adelaide</td>
<td>124</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Gawler</td>
<td>110</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Mt Gambier</td>
<td>103</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Murray Bridge</td>
<td>120</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Port Augusta</td>
<td>133</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Port Pirie</td>
<td>122</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Yorketown</td>
<td>155</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>TASMANIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burnie</td>
<td>128</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Flinders Island</td>
<td>122</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Hobart</td>
<td>85</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Launceston</td>
<td>90</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Queenstown</td>
<td>94</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>St Marys</td>
<td>146</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballarat</td>
<td>131</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Benalla</td>
<td>146</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>Geelong</td>
<td>102</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Horsham</td>
<td>120</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>Lakes Entrance</td>
<td>145</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Melbourne</td>
<td>132</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>Hastings</td>
<td>117</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Sorrento</td>
<td>106</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Mildura</td>
<td>142</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Stawell</td>
<td>130</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>WESTERN AUSTRALIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albany</td>
<td>125</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Broome</td>
<td>232</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>Bunbury</td>
<td>147</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Derby</td>
<td>211</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Geraldton</td>
<td>138</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Kalgoorlie</td>
<td>137</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>Perth</td>
<td>130</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>Joondalup</td>
<td>133</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Midland</td>
<td>122</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Port Headland</td>
<td>168</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Tom Price</td>
<td>138</td>
<td>182</td>
<td></td>
</tr>
</tbody>
</table>

Note: Locations used in this table are based on the Bureau of Meteorology grid cell latitude and longitude to the central Post Office of each city or town, with the exception of Tom Price in WA, which uses the Police Station.

CONTINUOUS OVERFLOW MEASURES L/s/m

<table>
<thead>
<tr>
<th>Slot Area</th>
<th>OVERFLOW CAPACITY L/s/m</th>
<th>115 QUAD GUTTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200mm²</td>
<td>.50 L/s/m</td>
<td></td>
</tr>
<tr>
<td>600mm²</td>
<td>.25 L/s/m</td>
<td></td>
</tr>
</tbody>
</table>

Overflow capacity is proportional to slot area.

Lower edge of slot 25mm below top of fascia.

Back Gap

2mm Gap Spacer 1.2 L/s/m

High end of the gutter a minimum of 10mm below the top of the fascia required.

- Minimum fall 1– 500.
- Spacers – maximum spacer centres 600mm.
- Roofing membranes trimmed above gutter back.

Continuous Overflow Method

Continuous Overflow Method

Continuous Overflow Method

Note: Overflow slots not to be used as the only performance solutions.
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>OVERFLOW CAPACITY</th>
<th>115 QUAD GUTTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop End Weir</td>
<td>0.5 L/s</td>
<td></td>
</tr>
<tr>
<td>Clear Width 100mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25mm below top of fascia.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inverted Nozzle	1.2 L/s	
Installed within 500mm of gutter high point.		Dedicated Overflow Measure
100 x 50 Nozzle lengthways 25mm below top of fascia.		50 - 100mm

Front Face Weir	1.2 L/s	
Minimum 200 x 20 Slot		
Installed 25mm below top of fascia.		20mm

Rain Head	3.5 L/s	
75mm Overflow		
Centre line of hole 100mm below top of fascia.		100mm

Ref Table 3.5, 2.4B National Construction Code
STEELINE EAVES GUTTER INSTALLATION GUIDE
VICTORIA

It is the responsibility of designers and installers to comply with the NCC2016 requirements (Page 2).

| NCC2016 Volume 3 Plumbing Code of Australia. |
| AS/NZS 3500.3 |

Steeline Roofing Products Test for Average Bottom Back Gap using a 2.0mm spacer while under Load (Full Gutter). 12th September 2016.

Overflow Performance Solution using the Back Gap method.

- Fixing Eaves Gutter to Steel Fascia.
- Maximum Rafter Bracket centres must not exceed 1200mm for steel roofing and 600mm for tile roofing application.
- Maximum Spring Clip centres: 1200mm.
- Maximum Gutter Stiffener centres: 1200mm.
- Maximum Spacer centres: 600mm.
- Gutter Stiffeners and Spacers to be located next to Spring Clip.

 Note: Spacers required at 600mm centres maximum to maintain the average required back gap.

- Steeline Eaves Gutters should be installed with the high end of the gutter 10mm minimum from the top of the fascia.
- Gutter fall: 1:500 minimum.
- Maximum gutter run to a downpipe: 12.0m.
- Roofing membrane must be trimmed to finish above the back of the gutter.
- Gutter installation to timber fascia requires gutter brackets at 1200mm centres maximum with spacers at 600mm centres.

Whilst every care is taken in the preparation of these specifications, Steeline Pty Ltd accept no responsibility for the accuracy of the information supplied.